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VIBRATION ANALYSIS OF
CLUSTERED LAUNCH VEHICLES

SUMMARY

— A

The Saturn I vehicle represents a complex ensemble of nine beams joined together.
A first vibration analysis based on an equivalent single beam did not agree satisfactorily
with the test results of the full scale test vehicle. Comparison of analysis and test re-
sults rather dictates that the coupling effects of the nine single beam vibrations can not
be neglected. Hence, the analysis developed in this paper is based on a model consisting
of nine clustered beams.j However, the complexity of the system calls for many simpli-
fying assumptions. uwg_

E}:e basic idea of the analysis consists in coupling of the single beam vibrations
such that the connections of the beams will be preserved. The method applied to the un-
coupléd single beams is the well known transfer matrix method. The mentioned coupling
of the single beam vibrations leads to a linear homogeneous system of compatibility
equations which must be solved during each transfer. Realization of the boundary con-
ditions leads to a frequency curve indicating the coupled frequencies of the system.
Finally the coupled mode shapes can be cletermined.jj

{The analysis is programmed on IBM-709-4. Because it consists of simple
matrix operations the computer time is short. \

]?‘The results of an analysis of the Saturn I vehicle compare well with test results.k )
§ 3 Ny {
oV

SECTION I. INTRODUCTION

The Saturn vehicle as shown by Figure 1 consists of payload, S-IV stage and S-1
stage. In the S-I stage, eight clustered tanks (four fuel and four lox) are attached at
each end to the center barrel (lox tank). Then, the Saturn vehicle represents a highly
complex ensemble of nine beams joined together.

The results of a first vibration analysis based on an equivalent single beam did
not agree satisfactorily with the test results of the full scale test vehicle (Ref. 1). The
comparison of analysis and test results dictates that coupling can not be neglected; indeed,
the vibrations of the nine single beams must be coupled.




Subsequently, several proposals concerning the vibration analysis of clustered
booster vehicles have been made. Some of them are suggested by References 2, 3, and 4.
The analysis shown herein is that done by the Dynamics and Loads Branch (Structures
Division of the Propulsion and Vehicle Engineering Laboratory) George C. Marshall
Space Flight Center.

This analysis is of a model outlined in Section III of this report. Complexity of
the Saturn vehicle calls for many simplifying assumptions. But, remember the funda-
mental premise: the basic configuration of the model is a central beam with eight
smaller beams clustered about it. From this premise, simplifications can be made
concerning the mode of vibration, and the support conditions of the outer beams and
single beam models. Assumptions about the mode of vibration are:

a. The center beam is restricted to plane vibrations in a symmetry plane of the
vehicle through its long axis.

b. The outer beam vibrations occur symmetrically to this plane.

Nevertheless, each outer beam may have two planes of vibrations. The outer beam
supports are assumed equivalent to either simple supports, or to simple supports having
additional bending restraints. The single beams, finally, are modeled by lumped mass
systems based on Timoshenko's beam theory.

The essential part of the analysis (Section IV) deals with the coupling of the
single beam vibrations. The beams do not vibrate independently--they are connected.
Coupling means adjustment of outer beam and center beam vibrations such that the
connections of the beams will be preserved. In other words, certain conditions of com-
patibility must be satisfied. These circumstances can be expressed mathematically by
a linear inhomogeneous system of equations to be solved.

The fundamental method applied in this analysis is the transfer matrix method.
This method is well known (Ref. 5) but, for completeness a short explanation is given in
the appendix. The transfer matrix method is based on the assumption that the beam
masses and mass moments of inertia are lumped at stations of the beam axes. The
state at each station is determined by a state vector which contains deflection, rotation
angle, moment and shear at this station as components. The state vectors of successive
stations are linked by transfer matrices. Such a transfer matrix is the product of an
inertia and a stiffness matrix. In this way the transfer from one station to any other
station of the beam is determined by a matrix which is composed of inertia and stiffness
matrices. This applies especially to the end stations of the beam. These beam transfer
matrices of the center and the outer beams are defined in Table 2. From the elements of
these matrices the above mentioned compatibility equations can be formed and finally
solved. Then the transfer of the complete system can be performed (Table 3). Now,
realization of the boundary conditions leads to the eigenvalue equation. Evaluation of this
equation and determination of the mode shapes form the final steps of the analysis.

2




The whole procedure outlined above will be done by application of simple matrix
algebra. Formation, multiplication, inversion of low order matrices are the only opera-
tions performed. The matrices used and their dimensions are compiled in Table 4. The
analysis is programmed on IBM-709-4. -Because it consists of the mentioned simple
matrix operations, the computer time is very short. To obtain one mode shape and fre-
quency,approximately three minutes are necessary.

The results of an analysis of the Saturn I, SA-5 vehicle are presented and compare
well with the test results. The mode shape characteristics of these complex shapes in-
dicate the proper coupling model is used in the analysis.

SECTION II. MODEL

Before beginning discussion of the model used, a short description of the vehicle
will be given (Fig. 1). The vehicle consists of payload, second stage and first stage. In
the first stage, eight tanks are clustered symmetrically about a center tank. To connect
outer tanks with the center tank, a spider beam at the upper end and the outrigger assembly
on the lower end are used (Fig. 2). In addition, spider beam and outrigger assembly
provide interconnection between stages and supports of the engines, respectively. The
eight outer tanks consist of four lox tanks and four fuel tanks. The center tank is a
lox tank.

The basic configuration of the model is, therefore, a center beam with eight
smaller beams clustered symmetrically about it. Spider and outrigger structure provide
supports of the outer beams.

The preparation of a vibration analysis of this system represents a difficult pro-
blem. The elastic, vibrating structure consists of a three-dimensional ensemble of non-
uniform beams connected by the complex spider and outrigger structure. Obviously, the
analysis must be based on a simplified model. On the other hand, analytic results based
on too-simple models do not agree satisfactorily with the test results of the full scale
test vehicle. Studies made, using different models, indicate that realistic assumptions
concerning the outer beam supports are significant. Thus, to build up a mathematical
model, two basic principles should be considered:

a. For analytic reasons a simplified model must be used.

b. To represent satisfactorily the dynamic behavior of the actual vehicle, the
outer beam supports of the spider and tail sections must be modeled as closely as possible.

Some of the simplifying assumptions are usual and well known:

a. The nine beams of the vehicle model will be considered as Timoshenko beams.




b. The beam masses will be lumped at stations of the beam axes such that the
stiffness between stations may be assumed as constant.

¢. The liquid within the tanks will be agssumed as solid--having mass, but no
mass moment of inertia. The masses will be lumped like the other solid masses on the

beam axes.

Another assumption deals with the vibration itself. Obviously a three-dimensional
cluster, as in the Saturn vehicle, may vibrate in different modes depending on the nature
of the excitation. For simplification, the analysis proposed is restricted to vibrations
excited in a plane of symmetry. Cases (a) and (b) of Figure 3 show the positions of
such planes within the cluster.! Then, the center beam vibration occurs in the symmetry
plane. The outer beam vibrates symmetrically to this plane. Although the center beam
vibration is in one plane, the outer beams must be expected to vibrate in two planes.

The analysis under discussion is based on case (a) of Figure 3. Yet, the analysis
can be extended to case (b). On the.other hand, test results of the full scale test vehicle
do not indicate considerable deviations of mode shapes and frequencies of the cases (a),
(b), and (c¢) shown by Figure 3.

The two planes of vibration of the outer beams can be assumed as radial and
tangential planes (Fig. 4a). To distinguish among the different vibration planes, these
planes will be numbered (Fig. 4a). For reasons of symmetry, restriction to one side
of the vehicle is possible. The planes of radial vibrations are:

(1) (2) (4) (6) (8)
while tangential vibrations occur in the planes:
(3) (5) (7)

To measure deflections and rotation angles, coordinate systems must be assigned
to each vibration plane (Fig. 4b). Hence the outer beam vibration planes may be
characterized by the angles @, = 1,2,...(8) between the y-axes of the center beam and
outer beam vibration planes. ~Since only the cosine of these angles is important, the
angles may be measured in arbitrary directions (Fig. 4a, Table 1).

1. It must be mentioned that these planes do not represent perfect symmetry planes
since the arrangement of the outriggers is not symmetric to these planes (Figs. 4 and 5).
However, the differences between both types of outriggers are so small--especially with
regard to stiffness~-that the outriggers can be considered as equal.




Now, the most important assumptions have to do with the outer beam supports
located on spider arms and outriggers (Fig. 2). Spider arms and outriggers will be
regarded as massless beams rigidly connected with the center beam at two branching
points: Branching point 1 in the spider section, branching point 2 in the tail section.
The flexibility of spider arms, and outriggers can be determined by the influence co~

efficients GSP’ 60 respectively of the support points. The &'s are the deflections per
unit load in direction of the tank axes. In view of the outer beam connections shown by
Figure 2, the following assumptions can be made.

Spider section

In the radial planes of vibration (1), (2), (4), (6), (8), and in the tangential vibration
plane (5) the outer beams behave like simple supported beams.

Hence, the boundary conditions are

1l

(1)
Yi Y1 €08 & i=1, 2,4, 6, 8 (1)

Ml(l) =0

where Yi(l) , Mi(l) are deflection and moment of the ith vibration at the spider supports
and y; is the center beam deflection of branching point i. Hence y; c:os‘ai represents the

support deflection in vibration plane (i) of the spider section caused by the center beam
motion of branching point 1.

In the tangential planes of vibration (3) and (7) the outer beams behave like
supported beams having additional bending restraints (spring constant x).

This leads to the following boundary conditions:

(1)

7Y = yicosa; 1-3,5, 7

(5) _

lVIi =0 (2)
D = k(0 V - greosa) s i=3, 7

where 901(1), @, are the rotation angles of the ith outer beam and the center beam at
branching point 1 respectively.




Figure 5 shows a schematic sketch of the support conditions of the tangential
vibration planes. For convenience, the outer beam axes (in reality, situated on a cylinder
around the center beam) are rolled up in the drawing plane. One concludes that the
spring stiffness

where dO represents the outer tank diameter.

Since bending of the center beam causes rotation of the spider beam plane about

the angle ¢y, the angles 901(3) and g01(7) are not the effective angles acting on the
springs. Rather the effective angles are given by the parenthetical expression of the
last two equations of the system 2.

Tail Section

In the radial planes of vibration (1), (2), (4), (6),(8), the outer beams can be con-
sidered again as simple supported beams. Hence, the boundary conditions of these
planes may be written:

1l

(1) y2 cos a;

Mz(l) - 0 i=1,2,4,6,8 (3)

. . th
where yg(l) , Mz(l) represent deflection and moment of the i  outer beam vibration at
the tail support and y, is the center beam deflection of branching point 2.

The beams vibrating in the tangential planes (3), (5), (7), may be regarded as
supported beams having additional bending restraints. So, with regard to the deflections
it follows

Yz(l) = y2 cosa.; i=3,5, 17 (4)

To obtain the remaining boundary conditions of the vibration planes (3), (5), (7),
Figure 5 may be considered. It follows easily that



€02(3) - @9 COS Q3 = (nI—nH)/dO

5
0,7 - gy cos a = (g -y /d (5)
902(7) - @ycos gy = (nm-nw)/do

where %(1) is the rotation angle of the ith outer beam vibration at the tail support and
@, represents the vibration angle of the center beam at branching point 1. n is the

relative deflection of the support point i (i =1I, II, III, IV). The terms on the left side of
equations (5) represent the relative outer beam rotation angles at the support points
which affect the existing springs.

Obviously, bending of the center beam can cause axial forces in the outer tanks.
Still, from Figure 2, one realizes that axial forces may attack the outer lox tanks only.
The outer fuel tanks may not resist axial forces because of their special supports in the
spider section. Under consideration of the axial lox tank forces S3 S it follows from
Figure 5 that

0 > (6)
_ <M9(7) —M2(5) ] §l> 5
M d 2 o
_m?
v T O\7 4 2 > %

Now, from Figure 5, it may be concluded

0 6
_ _Sp o
(902'_ ¢1) e = S3 < 2 4 éL + 2>

where e is defined by Figure 5 and 5L is the lox tank influence coefficient.

Setting




one obtains

e
Sy = 5 (92 - 1)
and similar (7)
e
S7 = = g (QOZ -901)

From (5), (6) and (7) it follows

5 3 5) )
qu() - @y c08 Qg = C33 Mz() t Cy5 MZ()
: G : 7
902() - ¢pcos a5 = ¢y (Py - @p) + c3 My ) 055M2() + Cy Mz() } (8)
. 7
€02() - @ycos ap = Crs Mz(s) + ey Mz()
where
eéo
°L = T ds (9)
(o]
\
26
(o]
C33 = Cp3 = Cr1 = 42
0]
6
_ . % (10)
Cgs = Cp3 = = ) >
dO
o)
_ - __O
C31 = Cy5 = ~
2
0 y,

Equations 3, 4, 8, 9, and 10 represent the complete boundary condition set of the
outer tanks at the tail section.

At this point, some remarks will be made about coupling between the outer beam
and the center beam vibrations. Obviously, these vibrations can not occur independently.
The center beam distortions of branching point 1 and 2 influence the boundary conditions
of the outer beams, while the outer beam support forces, and moments, contribute to
shear and moment of the center beam at branching points 1 and 2.




Coupling exists also between the outer tank tangential vibrations. No direct
coupling exists between the vibrations of radial planes (1), (2), (6), (8). Hence, the
fuel tank modes of the planes (1), (8) and the lox tank modes of the planes (2) and (6)
are equal to each other. (See Figs. 4 and 6)

In the above boundary conditions (1),(2), (3), (4),(8), the terms containing

cos ozi (i=1, 2,...3) and °1, imply the coupling of the outer beam vibrations with the

center beam vibration. The terms with the coefficient cij’ i, j =3, 5, 7 imply the

coupling of the tangential plane vibrations (3), (5), (7),with each other.
Because
cos ay = cos 90° = 0

the vibration of the radial plane (4) is uncoupled and so, does not contribute to the center -
beam vibration. Conversely, a vibration in plane (4) can not be excited since plane (4)

is perpendicular to the assumed plane of excitation. For that reason, the radial vibration
of plane (4) could have been omitted from this analysis without any loss of generality.

SECTION HII. NUMERICAL RESULTS AND COMPARISON WITH TEST RESULTS

It is desirable to compare the results of the analysis with some dynamic test
results in order to substantiate the analysis procedures and the mathematical model to
the extent that sufficient structural detail was considered. The comparison can best be
evaluated if the results of the analysis are considered first. The analysis, as described
in this report, includes some interesting coupling of the outer tanks to the main beam.
The dynamic test results which are available, also need some explanation since the test
was a determination of transfer functions rather than a model survey.

Some typical mode shapes from the analysis are shown in Figures 7 to 16. (See
also Fig. 6) Each figure represents a single mode of the total vehicle and can be identi-
fied, with some reservations, as either the center line of the vehicle bending in a first,
second, or higher beam mode shape; or the bending of one of the outer tanks representing
the major bending. The modes identified by vehicle center line are called "bending
modes" and those identified by outer tanks are called '"cluster modes. " This identifica-
tion can be rather useful in the evaluation of the analysis but can also offer some confusion
in the proper presentation of results. The identification is maintained because of its
usefulness in analysis and because of the similar identification of the dynamic test
results.




The complication of a shape identification method can be seen if the mode shapes
are studied as the fill level is lowered in the first stage of the vehicle to represent change
of propellant with flight time. The simple and rather logical way to show the frequency
trend throughout flight is to join the lowest frequency with a smooth curve, the next
lowest, and so forth for the available data. As the total weight is reduced, the expecta-
tion would be for an increase in the frequency of the system. The frequency trend plotted
in Figure 17 shows that this is true when these next lowest frequencies are connected.
When sufficient fill conditions are used, the frequency trend lines will represent the

frequency trends of the system.

Now the same data points can be joined by lines which represent the same mode
shape trend from one time point to another. The trends of the '"bending' modes and
""cluster' modes are shown in Figure 18. The points on these curves between data points
do not correspond to vehicle frequencies, with the exception of the line segments that
happen to be identical to Figure 17. When this identification is used, the resulting curves
can have a decrease in frequency as the fill level is lowered. This decrease does not
show in Figure 18, but is not unusual. The curves also intersect and cross each other in
a manner which can be described as the cluster modes crossing the center line bending
modes. This crossing of the trends of Figure 18 brings up the question of crossing of

the trends of Figure 17. These trends can cross, or come together, since cases can
happen, and do happen where two modes of the system cannot be separated and a single

frequency exists for two different mode shapes.

Now the test results will be considered. The dynamic testing is conducted by
hanging the vehicle on a coil spring-cable suspension system in a special structural steel
test tower. The cables are attached to the base of the booster stage and to the test tower
at about the level of the top of the booster. A small angle is allowed between the cable
from the vertical, and the springs between the cable and tower are as soft as practical.
This system provides little lateral restraint and only a small end moment, which is
necessary to maintain the vertical stability of the vehicle.

With the vehicle suspended in the tower, a single shaker is used to conduct the
test program. The shaker is attached at the engine gimbal station of the first stage and
transfer functions are determined for the one shaker location. The amplitude at the
frequencies with maximum response is plotted and decay damping at these frequencies is
determined. From these tests, the frequency trend curve and the "response mode
shapes' will be used for comparison. The comparisons shown are as complete as
practical and a few comments are in order.

The comparison of frequency trends is shown in Figure 19. The first bending
mode frequencies compare favorably. The largest deviation is in the second mode and
can be partly accounted for by the absence in the analysis of an engine mode representation.
This has been added to later analysis and provides a better comparison. The test did
not find an engine mode at all test points and is an example of the difficulty in obtaining

all modes on the dynamic test vehicle.

10



The frequency comparison without mode shape comparison is not sufficient for
such a system, therefore, the mode shapes are presented for the flight time of 35 seconds.
The calculated mode shapes show good comparison to center line bending of the test modes.
Some test mode shapes are compared with two calculated modes, since the test is a
"response mode shape.'" The outer tanks do not compare as well in amplitude as the
center line, since the tank response is generally lower. The comparison to more than
one calculated mode shape and the difference in outer tank relative amplitude can partly
be attributed to the type of test conducted.

The results from the analysis give good agreement with test results. It can be
concluded that the structural connections and general structural parameters have been
properly used since the mode shapes compare favorably with test results. The structural
spring constants for tank coupling have been improved since this analysis and theoretical
response analysis using the calculated mode shapes indicate the lower amplitude response
of outer tanks is to be expected and the response of adjacent modes can be significant.

SECTION IV. ANALYSIS

The transfer matrix method as outlined in the appendix will now be applied to the
developed model. The notations of the state vectors and transfer matrices are given in
Tables 2 and 3. The simple transfers of the single beams (center beam, outer beams)
may be seen from Table 2 while the transfer of the complete model is given by Table 3.
The inertia and stiffness matrices T and S will be determined from the given vehicle

) F
data. (See appendix.) For this reason, the matrices Ly, L,, Ls, L2< ), LZ(L)
which are composed of inertia and stiffness matrices (see appendix) can be considered

as known.

From Table 3 of the transfer 0— 3 of the model may be concluded as

Ly=l,L,L] (11)

s
32

_ .
Ys Ly L bbby yo':La LiLyyy =Ly, }
Lo =LsL, L,

where

. . . ]
z1(11.) li(zf) 11(;) 11(;)
1511) £§21) 12(31) 1§41)

ol T T Y VR £) (12)
L 31 1 32 L 33 1 34
off) o) ey £§41)_J i=14,23

i1




L', represents the transfer 1 —1' (over branching point 1) and L'y represents the transfer
2' — 2 (over branching point 2).

To perform the transfer 0 — 3 the matrices L'y and Ly¥ must be known. The
determination of these matrices represents the main problem of the analysis and will be
done in two steps. First, L'; will be determined and then in a direct way Lo* .o L'y will

not be determined explicitly.

The sketch on the top of Table 3 shows the vehicle model represented by the

center beam axis. Because the outer beams are removed, external forces and moments

must be applied to ensure equilibrium.

It follows, then, from this sketch:

0 , (13)

| 0

AQi, i = 1, 2 is the resultant of all outer beam support forces. One may,

therefore, write:

- 7 .
AQi = (-1)1 [Q‘(i) cos a4 + Q(S) cos ag + 22 Qi(J) cos aj]; i=1, 2

i i =2
where
Qi(j) ;i =1,2;, j =1, 2...8 are the shears at the outer beam supports.
Using vector and matrix notation, one may write:
0
8 = (-—1)i vV, q; ; i=1,2 (15)
AQ.
|
12




where
0 0 0 0
0 0 0 0
Vo= | 0 0 0 (16)
cos @y 2 cos Qy...2C0s8 Q7 COS Qg
and
- _
1
QW
'(2)
Qi
9 = ;1 =1, 2 (17)
~ (8)
Qi
L _

AMi is caused not only by the outer beam support reactions, there is also a con-

tribution of the lox tank axial forces. AMi can, therefore, be written:
AMi = AM;: + AM'i' s i=1,2 ‘ ‘ (18)

where

AM‘i' represents the moment contribution of the outer lox tank axial forces.

AM'i can be expressed similar to equation 15

0
0 i ‘
0 ! i=1, 2
where
Mt
Ml(z)
m, = . (20)
m® i=1,2
|t

and V5 results from the matrix 16 by changing third and fourth row. 13




The second term of 18 may be obtained from Figure 5 and equation 7 as

i+1 i+ 1 4e?
AM! = 2(-1) 2eS; = (-1) e (¢y - ¢49)
or
0
0 i+1 . '
AM" = (—1) C U>“4 (YZ - YI) (21)
i
0 i=1,2
where
o = X
)
and
0 0 0 0
. _ |0 0 0 0 ,
Uy 01 0 0 (22)
0O 0 0 O
1
In equation 21 y, may be replaced by
1
Yé = Loy, (23)
(Table 3) then it follows
3\
0
0 i+1 !
ame| T D c Ay (24)
i
0 i=1, 2?
A - U‘{ (Ly - Uy)
‘ /
where U, is the four x four unit matrix.
From equations 13, 15, 19, 24 it follows:
Yi =y -Vga -Vam tcAy (25)

14




(i)

Now to replace m, the boundary conditions (1) and (2) with regard to M,

j=1,2..... 8, may be introduced. These conditions, written in vector notation are:
m1=-Kf1+KV;<y1 (26)
where
0000000 0]
0 0 0 00 0 0 O
0 0 xk 0 0 0 0 O
K= o o 0 00 000 (27)
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 00 0 « O
00 0 0 0 0 0 0]
- )]
qo%( ’
2
Gﬁi )
f. = (28)
i . .
» _
goi i i1, 2
[0 cosa; 0 07
0 cosay, 0 O
0 cosag 0O O
V' 9 = 0 cos ay 0 0 (29)
0 cosag; 0 O
0 cosag 0 O
0 cosa; 0 O
|0 cosag 0 O]
Insertion of equation 26 into equation 25--and little algebra--yields
1 B3
(U4'CA)Y1:(U4-V3KV2)Y1+V3 Kfl'V4q1 (30)
Setting
-1
(Uj-cA)  =U,+—S—A=R (31)
(2)
] -C |23

15




and

R(Uy-V3 KVy) = By

RV; K, =-B, (32)
equation 30 changes over in
y1=Byy -Byfi-Byay (33)
The relation 31 may be proved easily by verifying
(U-cA) U +——A)=U
From equations 14, 15, 19, 23, 24 one obtains
ys = (L, -cA)y;+V3m2 +Vy qy (34)

Equation 34 will be needed later on.
In equation 33 the sixteen components of the vectors f1 and q; represent the un-

knowns of the problem in hand. In the following it will be shown that f; and q; can be
determined by the outer beam boundary conditions of the tail section. From these con-

ditions it will be concluded:

fisz1 } (35)

where F and Q are eight x four matrices.
Then, combining equations 33 and 35, one obtains
1
Y1:(Bi‘BzF’B3 Q)Y1 (36)

and hence (see Table 3)

L!=B,-B,F-B,Q (37)

16




To determine the matrices F and Q of equations 35 the transfers of the outer beams
must be considered. In doing so, it is convenient to use the following notations:

i 1
1
o
(2)
Vi
dil = . 5 d12 :fl’ d13 :mi; d14 = ql (38)
0 S

where g M fi are defined by equations 17, 20, and 28, respectively.

Then the outer beam transfers (Table 2) may be written:

4
dyy = E ijdu'; k = 1, 2, 3, 4 (39)
ji=1
where
1?.(,F) 0 0 0 0 0 0 0 i
kj
0 PRS2 0 0 0 0 0
kj
0 0 LB 0 0 0 0
kj
(F)
i
ij: 0 0 0 ki 0 0 0 0 (40)
0 0 0 0 By 0 0
Kj
0 0 0 0 0 11({],]“) 0 0
0 0 0 0 0 0 le({jL) 0
0 0 0 0 0 0 0 ﬂl({jF)

k,j=1,2,3, 4 -

Application of the notation 38 to the boundary conditions: equations i, 2, and 26,
respectively, yields

17




ol

d11:V1ﬁY1

(41)
dig =m, =-Kf, +KVy,

where K and Vy* are given by equations 27 and 29. Vg* follows from the matrix 29 by
changing the first two columns.

Equations 39, 40, 41 result in

dZi’ = D1Y1 + Eif1+Li4 q,

where

sk Sk 4:2
Di:Li1V1+Lj_3 KV2 > ( )

E; =Lyy- Ly K
oo i=1,2,3 4

As already mentioned, the boundary conditions 3, 4,8 will now serve for deter-
mination of f; and q;. Using the vector notation 38 these conditions may be written:

d21:V>1'<Y2 1

B B3 (43)
Ug (dyy - Vy Y;):CL(YZ"Y;)“LCMng f

where

U 8>:< =

cCoo mroooo
=

cocoo coo oo
o, o ocoo oo
(@)
!
"'coo coo oo

oo Aocoococo

o O O oS O O OO
S O O S O PO O
S O O S O O OO
L© © O OOOOO‘
S O O e alleN ol
LOOO OO O OO

fto oo coco oo
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1t 0 0 0

o 1 0 0

0 0 Cg O

Cy= |0 0o o
0 0 Cg O

o 0 0 0

o 0 0 0

o 0 o0 0

L!

The elements C_; Cij; i,j =3, 5, 7 are given by equations 9 and 10.

Insertion of equation 23 into equation 43 and collection of terms yields

—_y* 1
d21 - V1|—2Y1

Ug dpy - Cadas = Cy,y

where

C=UiviscpL,-CyL

Css
0
Css
0
Crs
0

\

O OO O O OO

/

o R-—Rol-R=-N-N=

= O O O O O o o

-4

(44)

Now, replacement of y;, dy, dyy, dog by equations 33 and 42 changes the first two

equations 44 over in

Nya; #Np £, =Ry,

Nopay +Ny £, Ry,
where

Ny =Ly +ViL, By

Ny = E,+ViL, B,

R,=-D, +ViL,B;

1
Ngj = Ug Lag +CBy-Coyl g
Ngs = Us E5 +C By - CoE,q

R, =-UsDy +CB; +CyDy

(45)

(46)
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The matrices Nij i,j = 1, 2 are eight x eight matrices, while R; R, are eight

x four matrices. Solution of this system is given by equations 35 where

-1 - - -1 .
Q= Ny [- Ny ITHR, +Ngp 175Ny Ny Ry R, ] > (47)

_ -1
| = N1z ) Nu N21 sz

Proof by insertion.

Obviously the system of equation 45 is solvable only if the matrices I and Ny are
nonsingular matrices.

Now from equations 37 and 47 it follows that L} is known.

To determine Ly* given by the second equation 11 and Table 3, one may start
from equation 34. Considering equations 33, 35, and 42 it follows from equation 34:

Y2:(J+9F+HQ)Y1:L;<Y1 (48)
where J=V3D3+VyDy+(Ly-cA)By 1
9=V, E, +V,E, - (L,-cA)B,
(49)
H=Vy Ly #V, Ly -(L,-cA) By

Because of 47, 48, and 49 Ly* is known and hence

L=L LiL,

also (See eq. 13). In this way, the frequency equation of the system can be solved as
outlined in the appendix. The solutions are the eigenvalues

?\.1 = w% ; 7\2 = w% .
Now the start vectors y, can be determined.

Yo is the start vector of the center beam part between top 0 and branching point 1.

The start vector of the center beam between branching points 1 and 2 is given by

1

20



where

The start vectors, vectors of the outer beam vibrations, are

i
1
i
901( )
Mi(1)
(1) .
=1,2,...8
(@ !
The components of these start vectors follow from equations 35, 41, and 47,
y1 =Ly

21
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SPIDER BEAM

70" LOX TANK CONNECTION TO SPIDER BEAM
70" FUEL TANK CONNECTION TO SPIOER BEAM

105" LOX TANK CONNECYION TO SPIDER BEAM

§-1C STAGE YO §-TU STAGE CONNECTION

105" LOX TANK CONNECTION TO BARREL ASSY.

70" FUEL TANK CONNECTION TO OUTRIGGER ASSY.

70" LOX TANK CONNECTION TO OUTRIGGER ASSY.

AN O Ul P g S g

OUTRIGGER ASSY.
BARREL ASSY. STUB FIN

FIGURE 2. SATURN I BLOCK II CONNECTION DETAILS
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(b) F

(c)
(a)

F ~—- Fuel Tank
L --- Lox Tank

FIGURE 3. PLANES OF EXCITATION

24

—



Fom—mep >
s
N

SouB[Jd UOTIBIQIA [BIIUSSUBL

Z

SIWHALSAS LLYNITYO0D ¥ TdADIA

Z
T ®
(9) £ £ L

A
—E £
I\ urgag JI9JUL)
Z v A 1
@)
(1)
VA
VA

Soue[d UOTIBIGIA ey

(q

1933tamo utd * 7 7 'd
10881amQ snayL © T L

25

oUB]J UOTIBIGIA UWeag JIous))




B
o®
- —t—

Center Beam

——

Vibration Plane

(1)

F. .. Fuel Tank
L. .. Lox Tank *

F T. . . Thrust Outrigger
F. .. Fin Outrigger

(2)

2 0sp, 2 OSP4

Spider Section

Fuel Lox Fu.el Lox Fuel
0 (5) (3)
]
i i s Ss :
2 zﬂ Py l > l
M Mo /}% l .
g | w | I oo 1| .
2 é) - _géo 2 5 BT 2 5
P
£

— % = 4 —— % —f
FIGURE 5. OUTER TANK SUPPORT CONDITIONS ( TANGENTIAL VIBRATIONS)
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«—— Plane of Symmetry

I

FIGURE 6. SIGN CONVENTION FOR THE VEHICLE MODE SHAPE PLOTS
The sign convention for the vehicle mode shape is positive as indicated by the
arrows in the Figure above. The deflection curves of the tanks are plotted considering

the following:

1. The deflection curves are plotted in the planes as indicated above and are
represented in the vehicle plane of symmetry.

2. The reference axis for all deflections is the undisturbed main vehicle axis.
3. The eight planes are plotted with symmetry considered. Planes i, 2, 3, 5,
and 7 are plotted with their sign convention. Planes 6 and 8 have the same deflections

as planes 2 and 1, respectively, with opposite signs. Plane 4 has no deflection.

Notice: This sign convention is opposite to that used in the analysis.
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Table 1.

Vib. o, cos @,
plane ! '
1 0 1
2 450 N2 /2
3 450 N2 /2
4 90° 0
5 0 1
6 135° -2 /2
7 45° N2 /2
8 180° -1
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Table 4. Used Matrices and Their Dimensions

Dimension

Matrices

four x four

+

(L)

F .
’ Lé )s L2 ’ Ull*, U43 Aa Ra

Li: 1:13 2, 3; L;,’ L‘Za LZ*! L
Bi: J’Ti, S]_, 1:1, 2,...11, L,Ej, E

n

four x eight

V4: V39 BZ' B3’ G, H

eight x four

vox, F, Q, V¥, Di’ i=1, 2, 3, 4, cL, Ri’ i=1, 2

eight x eight

L P i — &
K’ ij’l"] 1> 2: 3; 4: El’ 1 15 ‘2: 33 4, U8 ’ CM, Nl]’
i,j=1, 2, |
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APPENDIX
TRANSFER MATRIX METHOD
APPLIED TO A LUMPED MASS BEAM

A spring-supported lumped mass beam is shown by Figure 20a. It consists of masses
m, and mass moments of inertia Pi concentrated at Stations i on the beam axis (i =1, 2,

3,....n). The stiffness between successive stations is constant.
If it is assumed that this system is free-vibrating, following a sinusoidal law,

shear and moment will obey this law also. The equilibrium conditions of the ith mass
(Fig. 20b) written in the amplitudes of the mentioned quantities are

M = AP, ¢, + M,
1 1 1 1

(A1)
Q. * =-Am
i A i’i

where i 95 are deflection and rotation angle at station i, M Qe Mi"j Q? represent

moment and shear at left and right side, respectively, of the ith mass point. Ais
the unknown parameter, of the problem,

A =wi=4q8fR (A2)
where w is the circular frequency and f is the natural frequency of the vibrating system.

The state in a point of the lumped mass system is determined by the state vector.

QX O«
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From equation Al it follows

y ¥ { 0O 0 0]
q>i* _ 0 1 0 0
M. 0 AP, 1 0
1 i

Qyx -Am, 0 0 1
[ _ 1 R
or yx=T vy

i i’i

where the "inertia" matrix T; is defined by equation (A3).

A similar relation exists between the state vectors yi* and yi+1 {Fig 20c).

where Si is the stiffness matrix. Si can be formed by solving the linear system of

differential equations:

-
GAsi (y ?)
- EI ¢!

I |
2z QO
—

with the boundary conditions

where (Fig. 20c)

M = M 3% 4+ X - X. xR
Forx - x) Q

Q = Qx
1
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(A4)

(A5)

(A6)

(A7)

(A8)



The solution of equations A6 (x = X, 1)

23 4.
Mok - i _ i
i 6EI£ GA |

= + £
YVivd Yy i
q)i.+1 B
where £, = x, - X,
i X1+1 i

J 2
:
®; T 2EI.
1
£,
_i
q>1 EI

is given by

Sl

12

i
M - ;
i 2ET, Q

ES

From equations A5, A7, A8, and A9 it follows

[

=95
Yo T4 Ty
Yg = S, Tz"z:Sz TySyTyry
. =5, . =5, . S
i " %i-1 i1 Y i-1 'i-1 T,y
e Toyn=TnSp-1Tpey 5. Ty oy
or y;!;= L 2
where =T
L=T, Sn—i Ther 31 T

-4%/2E1,
1 1
-4 _/EI,
1 1

- (43 - 1. /G
(i/GEIi i/’GAsi)
-4% /2FI.
1 1

L,
i

1

sk
Q;

(A9)

(A10)

(A11)
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The boundary conditions at Station 1 (Fig 20a) are

Q1::k1)’1 yg 781Q
or
17Ky Py o7 o My

(A12)
M

where k, k, and 6, © represent spring constants and influence coefficients, respectively,
of the beam support at Station 1.

Using matrix and vector notation, both types of conditions, from equation A12,
can be combined as follows:

-yl ] _1 0 0 5] ¥4
q)l _ 0 1 -0q 0 (Pi (A13)
M, 0 -k, 1 0 {
Ql k1 0 0 1 i
or
y, =E v, (A14)

where the matrixE, is 'defined by equation A13. Only two of the four columns of S can
be applied -- the remaining two must be changed to zero columns. The possible com-

binations of applicable columns are
1, 2; 38, 4; 1, 3; 2, 4 (A15)

What combinations should be used depends on the case in question. Obviously,
a free end determined by

k1=K1=0 or 6120'1-—"0

ki = K = or 6 =0 =0

the combination 3, 4 is required.
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If none of the four quantities k, «k, 6, o, is zero or infinite any of the above com-
binations can be selected.

The boundary conditions of the right end can be written

% kv, =0 fp T %@y 7O .
sk — or sk — (A16)
Mp Ky 9, =0 o, - oMy =0
Using vector and matrix notation equations A16 change over in
r D roo1 .
0
t 0 o 8] Iy [
0 1 -0, 0 *y _ 0 (AL7)
0 - Kn . 1 0 Mn" O
b
kn 0 0 1 | 'Qn i _O_
or
E vn=0 (A18)

where E, is defined by equation A17.

Contrary to the case of E,, two rows only of E, can be applied while the remain-

ing rows must be replaced by zero rows. The proper combinations are given again by
A15.

From the first equation A1l and equations Al4 and A18 it follows:

EnLElyl-':O (Aig)

Since En contains two zero rows while E1 contains two zero columns, equation A19
represents a linear homogeneous system of two equations. This system is solvable only
if the determinant A equals zero. A is a polynominal in A. The roots of A = 0.

A, Ag, Ag, ...
are the eigenvalues of the problem which can be found by a trial-and-error procedure.
Insertion of Aj into equation A19 yields the solution y,, which represents the start

vector. Now from application of equations A10 one obtains the state vectors of the
stations and hence the ith mode shape.
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The ith natural frequency may be calculated in accordance with equation A2.

In the case of a free beam, equation A19 may be written:

0 0 0 O [fn Lyp L3 L4 1 0 0 0 Yy 0
0 0 0 0 |02: £p 23 fas 01t 0 0 e _ |0
0 0 1 0 03 B3 I3 L 0 0 0 0 "éi 0
o 0 0 [_141 Ly fg3 Ay 00 0 0 U 0
or
Lygyy + Lgaoy = 0
(A20)
Lyyyy + Lypoy = 0
The frequency equation then follows as:
L34 L3a
=0 (A21)
Ly Ly

Now A must be determined so that equation A21 is satisfied. With this A, equation
A20, is solvable and yields the start vector.

The procedure to find mode shapes and frequencies is already outlined above.
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